Find the length of the unknown segment x
1. Find the length of the unknown segment x
Answer:
x = 4
Step-by-step explanation:
Intersecting Chords Theorem:
If two chords intersect, the product of the segments of one chord is equal to to the product of the segments of another chord.
Given segments length of intersecting chord:
First chord: x and 6
Second chord: 8 and 3
Equation:
(6)(x) = (3)(8)
6x = 24
6x/6 = 24/6
x = 4
Topic: Intersecting chords; Intersecting chords theorem
Step-by-step explanation:sorry im not sure abt it
2. Find the length of the unknown segment (x)
Answer:
what is the question ❓⁉️
Step-by-step explanation:
Thank you sa points
3. find the length of the unknown segment x
✏️POWER THEOREM
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{PROBLEM:}}[/tex]
Find the length of the unknown segment x.[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{ANSWER:}}[/tex]
[tex] \qquad\Large\rm» \:\: \green{10 \: units} [/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{SOLUTION:}}[/tex]
» By applying the Chord-Chord Power Theorem. The given states that:
[tex]\rm (EP)(ER) = (EA)(ET) [/tex]» Substitute the given and find x.
[tex](x)(4) = (8)(5)[/tex][tex]4x = 40[/tex][tex] \frac{ \cancel4x}{ \cancel4} = \frac{40}{4} \\ [/tex][tex]x = 10[/tex][tex] \therefore [/tex] The length of the segment x is 10 units.
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#CarryOnLearning
4. Find the length of the unknown segment (x) in each figure. Use theorem of secant segment and external secant segment.
✏️POWER THEOREM===============================
Direction: Find the length of the unknown segment (x) in each figure. Use theorem of secant segment and external secant segment.
#1. [tex](CA)(BA) = (DA)(EA)[/tex][tex](15)(x) = (9 + 6)(6)[/tex][tex]15x = 15(6)[/tex][tex]15x = 90[/tex][tex] \frac{ \cancel{15}x}{\cancel{15}} = \frac{90}{15} \\ [/tex][tex]x = 6[/tex]- Therefore, the value of segment x is:
[tex]\large \rm Segment \: x = \boxed{\rm \green{\: \: 6 \: \: }} [/tex][tex] \large \sf[/tex]
#2. [tex](NK)(OK) = (MK)(LK)[/tex][tex](20)(x) = (8 + 10)(10)[/tex][tex]20x = (18)(10)[/tex][tex]20x = 180[/tex][tex] \frac{ \cancel{20}x}{\cancel{20}} = \frac{180}{20} \\ [/tex][tex]x = 9[/tex]- Therefore, the value of segment x is:
[tex]\large \rm Segment \: x = \boxed{\rm \green{\: \: 9 \: \: }} [/tex][tex] \large \sf[/tex]
#3. [tex](GI)(HI) = (FI)(JI)[/tex][tex](39)(x) = (4 + 9)(9)[/tex][tex]39x = (13)(9)[/tex][tex]39x = 117[/tex][tex] \frac{ \cancel{39}x}{\cancel{39}} = \frac{117}{39} \\ [/tex][tex]x = 3[/tex]- Therefore, the value of segment x is:
[tex]\large \rm Segment \: x = \boxed{\rm \green{\: \: 3\: \: }} [/tex] ===============================#CarryOnLearning
#LearnWithBrainly
5. Find the length of the unknown segment.
Answer:
Which shows 1 as a power of 10?
a. 10 to the third power
b. 10 to the third power
c. 10 to the zero power
d. 10 to the first power
What value of n in b exponent 5 over b exponent n = 1 over b will make the equation TRUE?
a. 1
b. -6
c. -1
d. 6
Step-by-step explanation:
6. find the length of the unknown segment of x in each of the following figures
Answer:
The first figure in the left corner is, FA = 10
The middle one is, TF = 10
The last one in the right corner is, AR = 16.
Step-by-step explanation:
Hope its help you
7. find the length of the unknown segment (X) in each of the following figures.
✒️POWER THEOREMS
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]
Find the length of the unknown segment (X) in each of the following figures.[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large \:\: \rm 1) \; X = 8 \: units [/tex]
[tex] \qquad \Large \:\: \rm 2) \; X = 13 \: units [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
Number 1:» Solve for x by the using the Chord-Chord Power Theorem. The given states that:
[tex] (AE)(ER) = (BE)(EM) [/tex]» Substitute the given to find the length of segment X.
[tex] (x)(3) = (6)(4) [/tex][tex] 3x = 24 [/tex][tex] \frac{3x}{3} = \frac{24}{3} \\ [/tex][tex] x = 8 [/tex][tex] \therefore [/tex] The length of segment X is 8 units.
[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]
Number 2:» Solve for x by the using the Chord-Chord Power Theorem. The given states that:
[tex] (KD)(KA) = (KW)(KN) [/tex][tex] \small (KA + AD)(KA) = (KN + NW)(KN) [/tex]» Substitute the given to find the length of segment X.
[tex] (3 + x)(3) = (4 + 8)(4) [/tex][tex] (3 + x)(3) = (12)(4) [/tex][tex] 9 + 3x = 48 [/tex][tex] 3x = 48 - 9 [/tex][tex] 3x = 39 [/tex][tex] \frac{3x}{3} = \frac{39}{3} \\ [/tex][tex] x = 13 [/tex][tex] \therefore [/tex] The length of segment X is 13 units.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
8. How to find the length of the unknown segment (x)?
We already have the idea that a line segment is formed when we connect two points. Given two points, we can find the length of the unknown segment using the distance formula.
9. Find the length of the unknown segment (x) in the following figures
Answer:
[tex] \purple{ \rule{10pt}{5555555pt}}[/tex]
Step-by-step explanation:
나보고 개년아
10. Find the length of the unknown segment x of the figure at the right. Show your complete solution on your answer sheet.
Answer:
hindi naman po makita!!
11. Find the length of the unknown segment.
Step-by-step explanation:
of these fraction is in mixed12. find the length of the unknown segment (x) in each of the following figures.
Answer:
for no. 6 and 7, we only consider the positive value of x.
13. Find the length of the unknown segment (x) in each of the following figures.
Answer:
Ahan po ung figure? Ahan po ung figure?
14. find the length of the unknown segment(x)
✒️POWER THEOREM
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large \:\:\rm{17) \: x = 4 \: units} [/tex]
[tex] \qquad \Large \:\:\rm{18) \: x = 15 \: units} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
#17: Solve using the Tangent-Secant Power Theorem.
[tex] 10^2 = (25)(x) [/tex][tex] 100 = 25x [/tex][tex] \frac{\,100\,}{25} = \frac{\,25x\,}{25} \\ [/tex][tex] 4 = x [/tex][tex] \therefore [/tex] The length of segment x is 4 units.
[tex] \: [/tex]
#18: Solve using the Tangent-Secant Power Theorem.
[tex] x^2 = (9 + 16)(9) [/tex][tex] x^2 = (25)(9) [/tex][tex] x^2 = 225 [/tex][tex] \sqrt{x^2} = \sqrt{225} [/tex][tex] x = 15 [/tex][tex] \therefore [/tex] The length of segment x is 15 units.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
15. find the length of the unknown segment (x)
Answer:
********* if you want to know the answer use translator
16. B. Find the Length of the unknown segment (x) in each of the following figures.
Answer:
where is the illustration?
17. Find the length of the unknown segment denote by x in the following figures.
Answer:
10 basta 10 yan kulit ng brainly nato
18. Use the given figure to find the length of the unknown segment.
Answer:
attached my solution.
hope it helps.
19. find the length of the unknown segment (x).find the x and MT
Answer:
incomplete question to answer properly
20. find the length of the unknown segment (×) in each of the following figure.
Answer:
1. x=8
2.x=4
3.x=-4
Step-by-step explanation:
correct me if I'm wrong
21. Directions: Find the length of the unknown segment x of the figure at the right. Show your complete solution.
✒️POWER THEOREM
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \LARGE \:\: \rm x = 4 \: units [/tex]
*Please read and understand my solution. Don't just rely on my direct answer*
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
Solve for x in the circle using the Tangent-Secant Power Theorem.
[tex] (25)(x) = (10)^2 [/tex][tex] 25x = 100 [/tex][tex] \frac{25x}{25} = \frac{100}{25} \\ [/tex][tex] x = 4 [/tex]Therefore, the length of segment x is 4 units
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ [tex] \large\qquad\qquad\qquad\tt 3/1 /2022 [/tex]
22. find the length of the unknown segment (x) in each of the following figures with solution.
Answer:
hirap naman niyan
Step-by-step explanation:
ano po yan ate anong grade Mona?
23. Find the length of the unknown segments (x) in each following figures.
Answer:
1. 7
2. 10
3. 6
4. 1
5. 8
6. 11
7. 5
8. 7
9. 2
10. 15
Step-by-step explanation:
24. Find the length of the unknown segment (x) in each of the followingfigures.
Correct me if im wrong
#Letshelpeachother
25. what is the length of unknown segment x
✒️POWER THEOREM
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large \:\: \rm x \approx 6.64 \: units [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
By the Two Secants Power Theorem. The given figure says that:
[tex] (GN)(GA) = (GC)(GL) [/tex][tex] \small (GA + AN)(GA) = (GL + LC)(GL) [/tex]Substitute the given and then find x.
[tex] (x + 6)(x) = (6 + 8)(6) [/tex][tex] (x + 6)(x) = (14)(6) [/tex][tex] x^2 + 6x = 84 [/tex][tex] x^2 + 6x - 84 = 0 [/tex]Solve the quadratic formula since we can't factor it easily. Use only the positive solution.
[tex] x = \frac{\text-6 + \sqrt{6^2 - 4(1)(\text-84)}}{2(1)} \\ [/tex][tex] x = \frac{\text-6 + \sqrt{36 - 4(1)(\text-84)}}{2(1)} \\ [/tex][tex] x = \frac{\text-6 + \sqrt{36 + 336}}{2} \\ [/tex][tex] x = \frac{\text-6 + \sqrt{372}}{2} \\ [/tex][tex] x = \frac{\text-6 + 2\sqrt{93}}{2} \\ [/tex][tex] x = \text-3 + \sqrt{93} [/tex]By getting the approximate value of √93
[tex] x \approx \text-3 + 9.64 [/tex][tex] x \approx 6.64 [/tex]Therefore, the unknown value of x is approximately 6.64 units
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
26. find the length of the unknown segment x in each of the following figures
Length of Unknown Segments of the Circle
The length of unknown segments of the circle can be computed using the different theorems. The first among these is the intersecting chords theorem. The next one is the intersecting secants theorem. The last one is the intersecting secant and tangent theorem. The explanation of each theorem is written below.
Answers:x = 8x = -4x = 12Solutions:1. Asked: The length of segment x.
Given: FA - 10
FS - 6
SA - 4
LS - 3
S - point of intersection
Operations: multiplication, division
Number Sentence: (FS)(SA) = (LS)(SG)
Solution: (FS)(SA) = (LS)(SG)
(6)(4) = (3)(x)
24 = 3x
[tex]\frac{24}{3}[/tex] = [tex]\frac{3x}{3}[/tex]
8 = x
Answer: Therefore, x = 8.
2. Asked: The length of segment x.
Given: SI - 16
TF - 10
FI - 8
TI - 18
Operation: multiplication, division
Number Sentence: (SH)(HI) = (TF)(FI)
Solution: (SH)(HI) = (TF)(FI)
(16 - x)(x) = (10)(8)
16x - x² = 80
-x² + 16x - 80 = 0
-1(-x² + 16x - 80 = 0)
x² - 16x + 80 = 0
(x - 20)(x + 4) = 0
x - 20 = 0; x + 4 = 0
x = 20; x = -4
SH = 20, HI = -4
Answer: Therefore, x = -4.
3. Asked: The length of segment x.
Given: OA - 9
AR - 16
Operations: multiplication, division
Number Sentence: (OS)² = (OA)(AR)
Solution: (OS)² = (OA)(AR)
OS² = (9)(16)
OS² = 144
[tex]\sqrt{OS^2}[/tex] = [tex]\sqrt{144}[/tex]
OS = 12
Answer: Therefore, x = 12.
Things to Remember:Intersecting Chords Theorem. If two chords or secants intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Intersecting Secants Theorem. If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment. Intersecting Secant and Tangent Theorem. If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment.What are the theorems used to find length of the segments in the circle:
https://brainly.ph/question/23212639
#BrainlyEveryday
27. B. Find the length of the unknown segment (x) in each of the following figures.
✒️POWER THEOREMS
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]
[tex] \qquad \Large \:\: \rm{1) \; x = 10.5 \: units} [/tex]
[tex] \qquad \Large \:\: \rm{2) \; x = 4 \: units} [/tex]
[tex] \qquad \Large \:\: \rm{3) \; x = 9 \: units} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]
#1: By according to the Chord-Chord Power Theorem, the given suggests that:
[tex] (ON)(NA) = (RN)(NM) [/tex]» Substitute the given and then find x.
[tex] (8)(x) = (12)(7) [/tex][tex] 8x = 84 [/tex][tex] \frac{\,8x\,}{8} = \frac{\,84\,}{8} \\ [/tex][tex] x = 10.5 [/tex][tex] \therefore [/tex] The length of segment x is 10.5 units
[tex] \: [/tex]
#2: By according to the Tangent-Secant Power Theorem, the given suggests that:
[tex] (VE)^2 = (VL)(VO) [/tex]» Substitute the given and then find x.
[tex] (10)^2 = (25)(x) [/tex][tex] 100 = 25x [/tex][tex] \frac{\,100\,}{25} = \frac{\,25x\,}{25} \\ [/tex][tex] 4 = x [/tex][tex] \therefore [/tex] The length of segment x is 4 units
[tex] \: [/tex]
#3: By according to the Secant-Secant Power Theorem, the given suggests that:
[tex] (IS)(IH) = (IT)(IF) [/tex][tex] (IS)(IH) = (IF + FT)(IF) [/tex]» Substitute the given and then find x.
[tex] (16)(x) = (8 + 10)(8) [/tex][tex] (16)(x) = (18)(8) [/tex][tex] 16x = 144 [/tex][tex] \frac{\,16x\,}{16} = \frac{\,144\,}{16} \\ [/tex][tex] x = 9 [/tex][tex] \therefore [/tex] The length of segment x is 9 units
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
28. Find the length of the unknown segment (x) in the following figures
Answer:
hindi ko po din alam
Step-by-step explanation:
hindi ko po alam
29. Find the length of unknown segment (x)
Answer:
x = 4Step-by-step explanation:
Intersecting Chords Theorem:
If two chords intersect, the product of the segments of one chord is equal to to the product of the segments of another chord.Given segments length of intersecting chord:
First chord: x and 6Second chord: 8 and 3Equation:
(6)(x) = (3)(8)
6x = 24
6x/6 = 24/6
x = 4Topic: Intersecting chords; Intersecting chords theorem
30. find the length of the unknown segment(x) in each of the following
find the length of the unknown segment(x) in each of the following